domingo, 10 de febrero de 2013

ENLACES Y BIOMOLECULAS


Enlace por Puente De Hidrógeno



El enlace puente de hidrógeno es una atracción que existe entre un átomo de hidrógeno (carga positiva) con un átomo de O , N o X (halógeno) que posee un par de electrones libres (carga negativa).

Por ejemplo el agua, es una de las substancias que presenta este tipo de enlaces entre sus moléculas. Una molécula de agua se forma entre un átomo de Oxigeno con seis electrones de valencia (sólo comparte dos y le quedan dos pares de electrones libres) y dos hidrógenos con un electrón de valencia cada uno (ambos le ceden su único electrón al oxígeno para que complete el octeto).
La molecula de agua es una molécula polar, por lo que presenta cuatro cargas parciales, de esta manera la fracción positiva (un hidrógeno) genera una atracción con la fracción negativa de otra molécula (el par de electrones libres del oxígeno de otra molécula de agua). Teóricamente una molécula de agua tiene la capacidad de formar 4 puentes de Hidrógeno

El enlace puente de hidrógeno es 20 veces más débil o de menor contenido energético que un enlace normal. Pareciera ser de poca importancia, pero debido a la gran cantidad de moléculas y gran cantidad de enlaces de este tipo que puede contener una sustancia, el enlace puente de hidrógeno tiene una especial importancia.

Si se compara al H2O , con el H2S deberían de ser substancias muy parecidas ya que el oxígeno y el azufre pertenecen al mismo grupo (VIA), tienen propiedades parecidas, la diferencia es que el oxígeno es más electronegativo. El agua es una moléula polar y puede formar puentes de hidrógeno, mientras que el ácido sulfhídrico (H2S)es no polar y no tiene dicha capacidad.



Los puentes de hidrógeno que existe entre las moléculas de H2O , explican el incremento del pF, pEb, densidad, viscosidad, capacidad caloríca, etc (ya que las moléculas se encuentran unidas entre sí), a diferencia H2S , cuyas moléculas  no cuentan con la atracción puente de hidrógeno y por lo tanto a temperatura ambiente es un gas. 
 

 
Fuerzas de Van der Waals


Las fuerzas de van der Waals, se conocen también como fuerzas de dispersión, a que se debe esta expresión, es que se encuentran presentes en las moléculas de muy baja polaridad, la podemos ver en los hidrocarburos. Las fuerzas de van der Waals se originan como resultado de diversos movimientos de electrones, cuando una porción de la molécula  en cierto instante se torna ligeramente negativa, en tanto que en otras regiones aparecen cargas positivas que son equivalentes a las negativas.


Las fuerzas de Van der Waals son relativamente débiles comparadas con los enlaces químicos normales, pero juegan un rol fundamental en campos tan diversos como química supramolecular, biología estructural, ciencia de polímeros, nanotecnología, ciencia de superficies, y física de la materia condensada. Las fuerzas de Van der Waals definen el carácter químico de muchos compuestos orgánicos. También definen la solubilidad de los alcoholes inferiores. Las propiedades del grupo polar hidróxilo dominan a las débiles fuerzas intermoleculares de Van der Waals. En los alcoholes superiores, las propiedades del radical alquílico apolar (R) dominan y definen la solubilidad. Las fuerzas de Van der Waals crecen con la longitud de la parte no polar de la sustancia.


Las fuerzas de Van der Waals incluyen a atracciones entre átomos, moléculas, y superficies. Difieren del enlace covalente y del enlace iónico en que están causados por correlaciones en las polarizaciones fluctuantes de partículas cercanas (una consecuencia de la dinámica cuántica). Las fuerzas intermoleculares tienen cuatro contribuciones importantes. En general, un potencial intermolecular tiene un componente repulsivo (que evita el colapso de las moléculas debido a que al acercarse las entidades unas a otras las repulsiones dominan). También tiene un componente atractivo que, a su vez, consiste de tres contribuciones distintas:

  1. La primera fuente de atracción es la interacción electrostática, también denominada interacción de Keesom o fuerza de Keesom, en honor a Willem Hendrik Keesom.
  2. La segunda fuente de atracción es la inducción (también denominada polarización electroquímica), que es la interacción entre un ultipolo permanente en una molécula, con un multipolo inducido en otra. Esta interacción se mide algunas veces en debyes, en honor a Peter Debye.
  3. La tercera atracción suele ser denominada en honor a Fritz London que la denominaba dispersión. Es la única atracción experimentada por moléculas no polares, pero opera entre cualquier par de moléculas, sin importar su simetría.
  4. A distancias de radios de Van der Waals


 
Diferencia entre Enlace Ionico Y Covalente

El enlace Ionico es donde se presenta transferencia de u atomo a otro
El enlace Covalente es donde los electrones comparten ambos átomos}


Enlace iónico.
¿Qué es el enlace iónico?

Es el enlace que se da entre elementos de electronegatividades muy diferentes. Se produce una cesión de electrones del elemento menos electronegativo al mas electronegativo y se forman los respectivos iones positivos (los que pierden electrones) y negativos (los átomos que ganan los electrones).
Este tipo de enlace suele darse entre elementos que están a un extremo y otro de la tabla periódica. O sea, el enlace se produce entre elementos muy electronegativos (no metales) y elementos poco electronegativos (metales).
¿Qué mantiene la unión?
La fuerza de atracción entre las cargas positivas y las cargas negativas que se forman; es decir, la fuerza de atracción entre los cationes y los aniones.

¿Se forman moléculas?

No, se forman redes cristalinas (ordenadas). Por tanto, los iones que se forman con este enlace no forman moléculas aisladas sino que se agrupan de forma ordenada en redes en las que el número de cargas positivas es igual al de cargas negativas, compuesto es neutro.
La fórmula que habitualmente se da es una fórmula empírica.
   Propiedades
  • Temperaturas de fusión y ebullición muy elevadas. Sólidos a temperatura ambiente. La red cristalina es muy estable por lo que resulta muy difícil romperla.
  • Son duros (resistentes al rayado).
  • No conducen la electricidad en estado sólido, los iones en la red cristalina están en posiciones fijas, no quedan partículas libres que puedan conducir la corriente eléctrica.
  • Son solubles en agua por lo general, los iones quedan libres al disolverse y puede conducir la electricidad en dicha situación.
  • Al fundirse también se liberan de sus posiciones fijas los iones, pudiendo conducir la electricidad.
Enlace covalente.



¿Qué es el enlace covalente?

Es el enlace que se da entre elementos de electronegatividades altas y muy parecidas, en estos casos ninguno de los átomos tiene más posibilidades que el otro de perder o ganar los electrones. La forma de cumplir la regla de octeto es mediante la compartición de electrones entre dos átomos. Cada par de electrones que se comparten es un enlace.
Este tipo de enlace se produce entre elementos muy electronegativos (no metales).
Los electrones que se comparten se encuentran localizados entre los átomos que los comparten.

¿Qué mantiene la unión?

La fuerza de atracción entre las cargas positivas de los núcleos y las cargas negativas de los electrones que se comparten.


Tenemos moléculas como tales en el caso de las sustancias moleculares. Si los átomos que se unen con enlace covalente forman 'sólidos covalentes' o 'redes covalentes', no tendremos moléculas como tales entidades que se puedan aislar.


   Sustancias moleculares
Están constituidas de moléculas; es decir, agrupaciones de un número concreto de átomos que se encuentran unidos dos a dos mediante enlace covalente. Se representa mediante la fórmula molecular.
Son las únicas sustancias que podemos considerar que tienen moléculas como tales entes que se pueden aislar.
Propiedades.
Son las habituales de los enlaces covalentes:
  • Temperaturas de fusión bajas. A temperatura ambiente se encuentran en estado gaseoso, líquido (volátil) o sólido de bajo punto de fusión.
  • La temperaturas de ebullición son igualmente bajas.
  • No conducen la electricidad en ningún estado físico dado que los electrones del enlace están fuertemente localizados y atraídos por los dos núcleos de los átomos que los comparten.
  • Son muy malos conductores del calor.
  • La mayoría son poco solubles en agua. Cuando se disuelven en agua no se forman iones dado que el enlace covalente no los forma, por tanto, si se disuelven tampoco conducen la electricidad.



ENLACE GLUCOSIDICO
En el ámbito de los glúcidos, el enlace O-glucosídico es el enlace mediante el cual se unen entre sí dos o más monosacáridos formando disacáridos o polisacáridos, respectivamente. Su denominación más correcta es enlace O-glucosídico pues se establece en forma de éter siendo un átomo de oxígeno el que une cada pareja de monosacáridos.
En el esquema, se unen dos micromoléculass de α-D-glucosa (son α porque el grupo OH del carbono anomérico está en posición trans con respecto al CH2OH).
En el enlace O-glucosídico reacciona el grupo OH (hidroxilo) del carbono anomérico del primer monosácarido con un OH unido a un carbono (anomérico o no) del segundo monosacárido. Se forma un disacárido y una molécula de agua. El proceso es realmente una condensación, se denomina deshidratación por la característica de la pérdida de la molécula de agua, al igual que ocurre en la formación del enlace peptídico).
Si la reacción de los OH provienen de los dos carbonos anómericos, el disacárido será dicarbonílico y no tendrá poder reductor. Sin embargo, si en el enlace participan los OH de un carbono anomérico y de otro carbono no anomérico, el disacárido será monocarbonílico y tendrá poder reductor (ya que queda un grupo OH libre en el otro carbono anómerico). Este hecho se puede comprobar exprimentalmente mediante la reacción con el reactivo de Fehling o con el reactivo de Tollens.
Al final del proceso ambos monosacáridos quedarán unidos por un oxígeno (O), de ahí que el enlace se llame O-glicosídico.




Nomenclatura

Para nombrar el disacárido obtenido:

  • Se escribe el primer monosacárido implicado añadiéndole la terminación -osil.
  • Se escribe entre paréntesis y con una flecha los carbonos cuyos OH intevienen en el proceso (X → X`).
  • Se escribe el segundo monosacárido. Si el enlace es dicarbonílico terminado en -ósido, si el enlace es monocarbonílico terminado en -osa.
Así el ejemplo del esquema será: α-D-glucopiranosil (1→4) α-D-glucopiranosa

Tipos de enlaces

En la naturaleza se encuentran 5 tipos de enlace glucosídico entre diferentes tipos de monosacáridos:

  • α (1→2)
  • α (1→4)
  • α (1→6)
  • β (1→4)
  • β (1→6)


ENLACE PEPTIDICO



Formación de un dipéptido por la unión de dos aminoácidos mediante un enlace peptídico.



El enlace peptídico es un enlace entre el grupo amino (–NH2) de un aminoácido y el grupo carboxilo (–COOH) de otro aminoácido. Los péptidos y las proteínas están formados por la unión de aminoácidos mediante enlaces peptídicos. El enlace peptídico implica la pérdida de una molécula de agua y la formación de un enlace covalente CO-NH. Es, en realidad, un enlace amida sustituido.
Podemos seguir añadiendo aminoácidos al péptido, pero siempre en el extremo COOH terminal.
Para nombrar el péptido se empieza por el NH2 terminal por acuerdo. Si el primer aminoácido de nuestro péptido fuera alanina y el segundo serina tendríamos el péptido alanil-serina.

Características estructurales del enlace


Un tripéptido.


Podríamos pensar que una proteína puede adoptar miles de conformaciones debidas al giro libre en torno a los enlaces sencillos. Sin embargo, en su estado natural sólo adoptan una única conformación tridimensional que llamamos conformación nativa; que es directamente responsable de la actividad de la proteína. También podemos observar que, cuando se produce el enlace, se desprende una molécula de H2O.
Esto hizo pensar que no podía haber giro libre en todos los enlaces; y efectivamente, mediante difracción de Rayos X se vio que el enlace peptídico era más corto que un enlace sencillo normal, porque tiene un cierto carácter (60%) de enlace doble, ya que se estabiliza por resonancia.
Enlpep3.jpg

Por esa razón no hay giro libre en torno a este enlace. Esta estabilización obliga a que los 4 átomos que forman en enlace peptídico más los dos carbonos que se encuentran en posición a (marcado con a en la ilustración) con respecto a dicho enlace, se encuentren en un plano paralelo a ello:



Enlace peptídico.
Trans-Peptide Bond.png
Esta ordenación planar rígida es el resultado de la estabilización por resonancia del enlace peptídico. Por ello, el armazón está constituido por la serie de planos sucesivos separados por grupos metileno sustituidos. Esto impone restricciones importantes al número posible de conformaciones que puede adoptar una proteína.
El O carbonílico y el hidrógeno amídico se encuentran en posición trans (uno a cada lado del plano); sin embargo, el resto de los enlaces (N-C y C-C) son enlaces sencillos verdaderos, con lo que podría haber giro. Pero no todos los giros son posibles.
Si denominamos "Φ" al valor del ángulo que puede adoptar el enlace N-C, y "Ψ" al del enlace C-C, sólo existirán unos valores permitidos para Φ y Ψ; y dependerá en gran medida del tamaño del grupo R.
Se producen nuevamente restricciones al giro libre, debido a las características de los grupos R sucesivos.


EL AGUA COMO BIOMOLECULA

El agua es la biomolécula más abundante, y también la más importante. La vida, tal como se conoce en el planeta Tierra, se desarrolla siempre en medio acuoso. Incluso en los seres no acuáticos el medio interno es esencialmente hídrico. De hecho, la búsqueda de vida en otros planetas está supeditada a la presencia de agua.

El agua es una biomolécula inorgánica. Se trata de la biomolécula más abundante en los seres vivos. En las medusas, puede alcanzar el 98% del volumen del animal y en la lechuga, el 97% del volumen de la planta. Estructuras como el líquido interno de animales o plantas, embriones o tejidos conjuntivos suelen contener gran cantidad de agua. Otras estructuras, como semillas, huesos, pelo, escamas o dientes poseen poca cantidad de agua en su composición.




Propiedades del agua

El agua tiene propiedades especiales, derivadas de su singular estructura. Estas propiedades son:
  • Alto calor específico: para aumentar la temperatura del agua un grado centígrado es necesario comunicarle mucha energía para poder romper los puentes de Hidrógeno que se generan entre las moléculas.
  • Alto calor de vaporización: el agua absorbe mucha energía cuando pasa de estado líquido a gaseoso.
  • Alta tensión superficial: las moléculas de agua están muy cohesionadas por acción de los puentes de Hidrógeno. Esto produce una película de agua en la zona de contacto del agua con el aire. Como las moléculas de agua están tan juntas el agua es incompresible.
  • Capilaridad: el agua tiene capacidad de ascender por las paredes de un capilar debido a la elevada cohesión molecular.
  • Alta constante dieléctrica: la mayor parte de las moléculas de agua forman un dipolo, con un diferencial de carga negativo y un diferencial de carga positivo.
  • Bajo grado de ionización: la mayor parte de las moléculas de agua no están disociadas. Sólo un reducido número de moléculas sufre disociación, generando iones positivos (H+) e iones negativos (OH-). En el agua pura, a 25ºC, sólo una molécula de cada 10.000.000 está disociada, por lo que la concentración de H+ es de 10-7. Por esto, el pH del agua pura es igual a 7.
  • La densidad del agua: en estado líquido, el agua es más densa que en estado sólido. Por ello, el hielo flota en el agua. Esto es debido a que los puentes de Hidrógeno formados a temperaturas bajo cero unen a las moléculas de agua ocupando mayor volumen.

Importancia biológica del agua
Las propiedades del agua permiten aprovechar esta molécula para algunas funciones para los seres vivos. Estas funciones son las siguientes:
El zapatero se desplaza sobre el agua, debido a la alta tensión superficial de esta sustancia
  • Disolvente polar universal: el agua, debido a su elevada constante dieléctrica, es el mejor disolvente para todas aquellas moléculas polares. Sin embargo, moléculas apolares no se disuelven en el agua.
  • Lugar donde se realizan reacciones químicas: debido a ser un buen disolvente, por su elevada constante dieléctrica, y debido a su bajo grado de ionización.
  • Función estructural: por su elevada cohesión molecular, el agua confiere estructura, volumen y resistencia.
  • Función de transporte: por ser un buen disolvente, debido a su elevada constante dieléctrica, y por poder ascender por las paredes de un capilar, gracias a la elevada cohesión entre sus moléculas, los seres vivos utilizan el agua como medio de transporte por su interior.
  • Función amortiguadora: debido a su elevada cohesión molecular, el agua sirve como lubricante entre estructuras que friccionan y evita el rozamiento.
  • Función termorreguladora: al tener un alto calor específico y un alto calor de vaporización el agua es un material idóneo para mantener constante la temperatura, absorbiendo el exceso de calor o cediendo energía si es necesario.


BIBLIOGRAFIA



http://payala.mayo.uson.mx/QOnline/Puente_de_hidrogeno.htm



http://platea.pntic.mec.es/pmarti1/educacion/3_eso_materiales/b_iv/conceptos/conceptos_bloque_4_1.htm

http://www.conevyt.org.mx/cursos/cursos/cnaturales_v2/interface/main/recursos/antologia/cnant_3_13.htm

http://es.wikipedia.org/wiki/Enlace_covalente

http://es.wikipedia.org/wiki/Enlace_i%C3%B3nico


http://es.wikipedia.org/wiki/Fuerzas_de_Van_der_Waals 

http://es.wikipedia.org/wiki/Enlace_glucos%C3%ADdico




http://es.wikipedia.org/wiki/Enlace_pept%C3%ADdico


No hay comentarios:

Publicar un comentario en la entrada